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Abstract. The partitioning of a charge distribution by
surfaces exhibiting a local zero flux in the gradient vector
field of the electron density leads to an exhaustive and
disjoint division of the system into a set of mono-nuclear
regions or atoms, provided the only local attractors
present in the system are isolated nuclear attractors and
the electronic energy is less than that required to
produce the plasma state. The existence of non-isolated
attractors, whose limited occurrence is confined primar-
ily to excited state charge distributions of one-electron
systems, is shown to be readily encompassed within the
topological theory of molecular structure, a theory
whose purpose is to relate a system’s properties to the
observed topology of its density distribution. The zero-
flux surface serves as the necessary boundary condition
for the application of Schwinger’s principle of stationary
action to define the physics of an atom in a molecule as
an open system. Schwinger’s principle requires the use of
a special class of trial functions: those whose variation
is to be equated to the action of smooth, continuous
changes in the coordinates of the physical system caused
by the action of generators of infinitesimal transforma-
tions, the very requirement needed to ensure the appli-
cability of the zero-flux surface condition as the defining
constraint of an open system.

Key words: Atoms in molecules — Zero-flux surface —
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The zero-flux surface

The quantum theory of atoms in molecules [1] is widely
employed in the study of the experimentally measured
and theoretically determined properties of molecules and
crystals, as exemplified in a recent review by Spackman
describing its application to the analysis of charge

Contribution to the Proceedings of the 2000 Symposium on
Chemical Bonding: State of the Art in Conceptual Quantum
Chemistry

densities obtained from X-ray studies [2]. Within this
theory, an atom is defined as a open system, one that
is bounded by a surface S(r,) of local zero flux in the
gradient vector field of the electron density p(r), as given
in Eq. (1):

Vo(r) -n(r) =0 Vr e S(r) (1)

where n(r) is a unit vector normal to the surface at r. At
the meeting on ‘Chemical Bonding’ in La Colle-sur-
Loup France, my talk emphasized that the adoption of
the quantum theory of atoms in molecules requires the
replacement of the model of structure that imparts an
existence to a bond separate from the atoms it links — the
ball and stick model or its orbital equivalents of atomic
and overlap contributions — with the concept of bonding
between atoms; two atoms are bonded if they share an
interatomic surface and are thus linked by a bond path.
It was emphasized that the quantum mechanics of a
proper open system not only enables one to define the
properties of atoms that are bonded to one another
thereby assessing their degree of interaction, but pro-
vides, in addition, a characterization of the interaction
through the theorems that govern the local behavior of
the electron density [3].

This paper takes the opportunity to review and to
consider in more detail the topological and mathemati-
cal implications of the zero-flux surface and its role in
establishing the quantum mechanics of an open system,
a move prompted in part in response to questions raised
at the meeting.

Point attractors

The density exhibits a local maximum at the position of
a nucleus, and a nucleus is an isolated, three-dimensional
point attractor that serves as the terminus of the gradient
paths in its vicinity. It behaves as does a critical point
(CP) of rank three and signature minus three, a (3,-3)
CP. While non-isolated attractors of rank one or two,
corresponding to global and ring attractors, respectively,
defined and described below, are topologically possible,
only isolated point attractors of dimensions three, two,



and one, have so far been observed in experimentally
determined charge distributions. Correspondingly, only
such isolated point attractors have been theoretically
predicted to occur in the electron density distributions of
the ground and, with a single exception, excited states of
many-electron systems. Indeed, the overwhelming prev-
alence and ubiquitous occurrence of point attractors in
electron density distributions, both predicted and ob-
served, accounts for the success of the atomic concept in
the classification and prediction of the observations of
chemistry [1, 4] leading one to the immediate realization
that the application of Eq (1) to a charge distribution
accompanied with the stipulation that the nuclei be
excluded from S(ry), (along with non-nuclear maxima
whose sporadic appearance is discussed below) leads to a
disjoint and exhaustive partitioning of space into a set of
mononuclear, that is, atomic regions. Fig. 1 illustrates
this partitioning of the electron density for a highly
excited Rydberg state of the formaldehyde molecule,
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Fig. 1. Contour map of the electron density of the formaldehyde
molecule, H,CO, in the plane of the nuclei for the 2 'B, excited
state corresponding to the vertical excitation of an in-plane non-
bonded electron on oxygen into a p,-like orbital. The Rydberg-like
nature of the excitation is evident in the diffuse nature of the outer
density, resulting in a 46% increase in the molecular volume
enclosed by the outer contour of 0.001 au. The plot is overlaid with
trajectories representing the gradient vector field of the electron
density. The topology determined by this field is homeomorphic
with that exhibited by the ground state charge distribution: each
nucleus acts as a point attractor and defines an associated atomic
basin with the basins of neighboring atoms being separated by zero-
flux surfaces and their nuclei linked by bond paths. The outermost
contour value is 0.001 au and the remaining contours increase
in value in the order 2 x 10", 4 x 10". 8 x 10" au with n beginning
at —3 and increasing in steps of unity
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demonstrating that the nuclei continue to define their
individual domains even in the presence of the diffuse
density distribution found in excited states [5]. This
partitioning assigns to the nuclei their natural roles as
attractors, each dominating its own atomic basin, the
region of space traversed by the gradient paths of the
density that terminate at, that is, are attracted to, that
particular nucleus. An atom is defined as the union of an
attractor and its basin.

The cusp condition

Without the stipulation that the nuclei be excluded from
the partitioning surfaces S(ry), there are an infinite
number of surfaces that would appear to satisfy the zero-
flux boundary condition stated in Eq. (1). For example,
any region bounded by a set of gradient paths originat-
ing at a nucleus and terminating at say a cage critical
point, or a set originating at a nucleus and terminating at
infinity. However, only by excluding nuclei from the
defining surface does one obtain a chemically meaning-
ful partitioning of configuration space, that is, a
partitioning into atoms. It is this procedure that yields
a unique definition of an atom, as the union of an
attractor and its basin. The manifold physical conse-
quences of this definition of an atom, which is a
manifestation of the dominance of the nuclear-electron
force in determining the form of matter, stand alone as a
reason for imposing Eq. (1) with the exclusion of nuclei,
as the boundary condition for the definition of an atom,
one that applies whether the atom be free or bound.

Nonetheless, because of the nuclear cusp condition,
the electron density p(r) does not satisfy Eq. (1) at a
nuclear position and thus one can make the argument
that nuclei are automatically excluded from any zero-
flux surface. The statement that the zero-flux condition
yields a disjoint and exhaustive partitioning of a system
into atomic domains then requires as its sole restrictive
condition that only isolated point attractors be present.
The cusp condition is clearly an important point,
one that merits further discussion in addition to that
originally [6, 7] and subsequently given [1].

The Coulombic Hamiltonian, one which treats the
nuclei and electrons as point charges, becomes infinite
in magnitude whenever two point charges coalesce. As
a consequence, Kato [8] demonstrated that the wave
function  must exhibit cusps — its first derivative be-
coming discontinuous — when the coordinates of two
particles coalesce. In particular, this means that Vi and
hence Vp, the latter as discussed by Steiner [9], are un-
defined at a nuclear position coordinate. Because of this
discontinuous behavior of the gradient of the density at
a nuclear position, such coordinates do not satisfy the
zero-flux surface condition, Eq. (1), and must be ex-
cluded from such surfaces. Thus, for a system of point
attractors the atomic partitioning defined by Eq. (1) is
unique and exhaustive.

Now, of course, nuclei are not point charges, exhib-
iting a radius R proportional to their mass number A,
with R = 1.4 A'? x 107"% cm [10]. So the question must
be asked as to whether the finite size of a nucleus in-
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validates the use of the Coulombic Hamiltonian in
the application of quantum mechanics to chemistry, and
in particular to the study of the topological properties of
the electron density. One should recall that every
Hamiltonian that one uses to describe a given system
and predict its properties is a model Hamiltonian. One
chooses a Hamiltonian on the basis of its ability to
recover the known or measured physics of the system
under study. We are fortunate in this regard with respect
to the question of the suitability of the Coulombic
Hamiltonian, in that this question has been unequivo-
cally answered experimentally through the study of the
scattering by nuclei of high energy electrons. For high
enough energies, the de Broglie wave length of the
electron becomes comparable to the nuclear radius R
and the scattering of high energy electrons can be used to
gain information about the charge distribution within a
nucleus. Elton [11] has considered the elastic scattering
of high energy electrons from nuclei using both the
Coulomb potential for a point nucleus and potentials
that model the effects of a nucleus of finite size. He finds
that for energies up to 40 MeV for light nuclei and for
energies less than 20 MeV for heavy nuclei, no errors are
introduced into the calculated scattering intensities
through the use of the nuclear point charge model. (The
de Broglie wave length of a 20 MeV electron equals
3 x 107" cm, approximately one hundred times larger
than the radius of a nucleus of mass number 200.) From
an operational point of view, the potential exerted by the
nucleus on an electron is sensibly Coulombic, even for
energies well beyond any encountered in chemistry. One
readily calculates that the energy required to ionize the
remaining electron from a U™ °! ion is only 0.12 MeV,
well below that required to cause the electron to view the
nucleus as other than a point attractor. Thus, the Cou-
lombic Hamiltonian will introduce no errors for any
system possessing energies short of those required to
generate a plasma. It is also important to note that the
relativistic solutions for a hydrogen-like atom contain
the factor e™" and hence both radial components to the
spinor exhibit cusps [12]. Thus, extending the Hamilto-
nian to include relativistic effects when v/c approaches
unity will not affect the cusp condition. In addition, since
the two components of the spinor are differently affect-
ed, the nodes in the excited state solutions vanish with
the inclusion of relativistic effects. One concludes that
the use of the cusp condition in the definition of an atom is
completely acceptable up to energies that would result in
the formation of a plasma and for a Hamiltonian that
includes relativistic effects.

Because of the cusp condition, the local maxima ex-
hibited by the density at the nuclear positions are not
true critical points. However, as previously pointed out,
there always exists a function homeomorphic to the
density which coincides with it almost everywhere and
for which the nuclear positions are (3,—3) critical points.
In this sense, the nuclear positions behave topologically
as do (3,-3) critical points in the charge density. It is
worthwhile noting that this interpretation is consistent
with the observed satisfaction of the Poincaré-Hopf re-
lationship that governs the number of rank three critical
points of each type that can co-exist for a given finite

number of point attractors when identified at (3,-3)
critical points, as found in isolated molecules [1] or for
an infinite lattice of attractors, as found in a crystal [13,
14]. The satisfaction of the Poincaré-Hopf relationship
for molecules or the related Morse relations [14] dem-
onstrates that operationally, the homeomorphic identi-
fication of the nuclear maxima in the density with (3,-3)
critical points is topologically correct.

The periodicity present in a crystal prompted Pendas
et al. [14] to introduce the concept of a primary bundle,
the set of trajectories of Vp(r) with common o« and
o limits; the bundle of trajectories starting at a cage CP
and terminating at a nuclear maximum, for example.
The union of all primary bundles sharing a common
nuclear attractor or maximum provides an alternative
definition of an atomic or attractor basin, one which
suggests the symmetrical definition of a repulsion basin
as one generated by all of the bundles sharing a common
cage CP, or density minimum in its interior. The two
basins provide complementary views of a crystal struc-
ture: an attractor basin is a polyhedron with as many
faces as there are bonded neighbors, while a repulsion
polyhedron has vertices along the bond paths. Pendas
et al. state that the boundary surface of a primary
bundle is a zero-flux surface, which it is for every point
on the surface with the exception of the nuclear position.

The existence of non-nuclear maxima in the density,
that is, non-nuclear attractors, is now well established,
both experimentally and theoretically. The value of p(r)
at the maximum is small and only slightly in excess of
the values at its connecting (3,—1) CPs. In addition, the
curvatures of the density at the maximum are of small
magnitude. This behavior is typified by the non-nuclear
maximum that is found to characterize an F-center in an
alkali halide crystal, where p(r.) =0.018 au and
'V2p(ro)| = 0.015 au [15]. A non-nuclear maximum in
the density is a (3,—3) CP and while any bundle of gra-
dient paths terminating at the CP will be bounded by a
zero-flux surface, there is no physical basis for associ-
ating other than the basin defined by the complete set of
trajectories that terminate at the CP with its presence, a
procedure that results in the exhaustive partitioning of
the space of the crystal or molecule containing such CPs
into regions, each of which contains a point attractor. In
the identification of an F-center in an alkali halide
crystal with the basin of a non-nuclear maximum for
example, one determines it to have a population of
0.63 ¢ and an energy of —3.5¢V, compared to the
calculated energy of 4.9 eV required for the ionization
of the odd electron.

Ring and global attractors

The existence of non-isolated maxima in p(r) as found in
the excited states of one-electron systems for example,
was previously recognized [1, 16]. Since there is little
chemical literature devoted to such systems, they did not
seem to justify any fuller discussion at the time the
theory was under development. Nonetheless, the identi-
fication of the critical points in p(r) and their association
with chemical concepts is readily extended to the density



distributions exhibited by such excited states through the
recognition of global and ring attractors, in addition to
the ubiquitous isolated point attractors and, in so doing,
one completes the description of the possible attractors
that can be identified in the charge density or any three-
dimensional scalar field.

The nodal surface in the 2S excited state of the hy-
drogen atom is a zero-flux surface that satisfies Eq. (1).
Its presence is used to exemplify the definition and
properties of a global attractor. Global attractors are
not new to the topological study of the density, being
present in the Laplacian of the electron density of the
ground states of many-electron atoms [1]. The density of
the 2°S state of hydrogen exhibits a local maximum at
the nucleus and a surface of radius 5 au over which p(r)
attains its maximum radial value, with an intervening
nodal surface of radius 2 au. Topologically, a zero-flux
surface (aside from the one at infinity) always represents
a partitioning between attractor domains. Thus, the
surface over which p(r) attains its maximum value in the
2S state is a surface of critical points, that is, non-
isolated, degenerate critical points, each of rank 1 and
signature —1, a (1,—1) critical point (CP) which shall be
termed a ‘global’ attractor. The axis of the single non-
vanishing negative curvature at each CP is directed
along a radial coordinate, the curvatures associated with
the two axes tangent to the sphere of maximum density
necessarily equaling zero. The spherical surface over
which L(r) = =V?p(r) attains its maximum value within
a shell of charge concentration in the Laplacian distri-
bution, is also a global attractor. All the points of the
global attractor in the 2S state are linked to the nuclear
point attractor by an infinite number of pairs of trajec-
tories which originate in the zero-flux surface, a surface
composed of (1,+1) CPs; one trajectory of each pair
terminates at the nucleus, the other at the radially di-
rected point (a radial maximum) in the global attractor.
Thus, the nucleus is linked by a bond path to each point
of the global attractor, the (1,+1) CP being the global
analogue of a (3,—1) CP. All of the ideas associated with
point attractors survive for the global attractor, with the
nuclear attractor linked by a bond path to every global
point attractor and with the basin of the point and
global attractors separated by a zero-flux surface. The
difference being that in an excited S state one ‘attractor’
consists of a global set, an infinite number of attractors
all of rank one forming a spherical surface.

An excited IT state of Li, ", which behaves as an ef-
fective one-electron system, does not exhibit the usual
single (3,—1) CP between at the mid-point of the inter-
nuclear axis, but instead a torus of non-isolated degen-
erate (2,0) CPs encircling the mid-point, that is, a ring of
maximum density encircling the axis [16]. The negative
curvature at each point on the (2,0) ring attractor defines
a pair of trajectories one of which is directed and ter-
minates at a (3,+ 3) or cage CP, a local minimum in p(r)
located at the mid-point of the axis. The positive cur-
vature defines a unique pair of trajectories each of which
terminates at one of the nuclei, a bond path linking each
point in the ring attractor to the nuclei. In this instance
of a ring attractor, the nuclei are linked by two cones of
bond paths. Analogous ring attractors are found in L(r)
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distributions, the associated bond paths linking the
bonded charge concentrations lying within the basins of
the neighboring atoms, as found in N, or F,, for ex-
ample [17]. Thus, attractor domains can be linked by a
single bond path originating from an isolated (3,-1) CP,
by two cones of bond paths generated by a torus of (2,0)
CPs or by an infinite set of bond paths radially directed
from a nodal surface, a sphere (1,+1) CPs.

The question of how one interprets the partitioning of
a molecule that exhibits a ring attractor is readily ac-
complished by noting that the two-dimensional basin
defined by the trajectories that terminate at the ring at-
tractor serves as an interatomic surface for the two at-
oms whose nuclei serve as the termini of the associated
cones of bond paths, the two Li atoms in Lij, for ex-
ample. The ring attractor is in effect an ‘exploded’ (3,-1)
bond critical point, which is itself a two-dimensional
attractor whose ‘basin’ consists of the trajectories that
terminate there and define the interatomic surface. The
presence of a global attractor clearly partitions the
28 state of the hydrogen atom, the basin of the global
attractor extending from the nodal surface to infinity,
thereby violating Dalton’s dictum that an atom be in-
divisible. The possibility of global attractors appearing
upon electronic excitation in no way affects the useful-
ness or applicability of the topological theory of struc-
ture. If, for example, observed in highly excited Rydberg
states of polyatomic molecules, a situation that has not
so far been the case [5], they would enable one to treat
the basin generated by the ‘excited electron’ as a separate
entity with a definable set of contributing properties,
prior to its separation from the system as a free electron.

Structurally, a global or ring attractor consists of a
non-countable set of degenerate CPs, that is, CPs of rank
less than three, and by virtue of the Palis-Smale theorem
[18], they are structurally unstable. To quote Poston and
Stewart [19], “Non-isolated critical points are especially
nasty, but in a strong sense extremely uncommon...”.
Physically, an excited state where non-isolated CPs are
found, has a brief and finite lifetime. Thus, unlike nuclear
attractors, global and ring attractors are both physically
and structurally unstable. The success of the atomic con-
cept is doubtless a result of the dominance of isolated,
point attractors in determining the structure of matter.
However, whatever attractors are present, of rank one,
two, or three, the classification afforded by the topological
theory of structure and the resulting physical under-
standing will apply, as it is simply a reflection of the
topology of the observable charge distribution, a distri-
bution that, in turn, determines the observed physics.

The role of the zero-flux surface in quantum mechanics

While the zero-flux surface plays a central role in the
topological theory of molecular structure, it was initially
proposed as a spatial boundary because the mono-nuclear
regions so defined recovered the chemistry of an atomin a
molecule [20]. This natural definition satisfied the two
essential requirements imposed on any possible definition
of an atom in a molecule that stem from the concept of a
functional group derived from experimental chemistry: it
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maximized the transferability of the atom’s distribution of
charge from one system to another (the atom’s form in
real space) and this transferability in the density was
accompanied by a paralleling transferability in the other
properties of the atom including its energy. This finding is
merely the satisfaction of the dictum that two atoms that
look the same must necessarily make the same contribu-
tions to all properties. In particular, the kinetic energy
density was found to parallel the transferability of the
density, the observation that suggested the virial theorem
should apply to such an atom in a molecule. An atomic
statement of the virial theorem would lead to a unique
partitioning of all properties, including its energy E(2), by
allowing one to equate E(Q) to —T(Q) [20]. In 1975 this
“virial partitioning”, as postulated on the basis of the
observed properties exhibited by molecular charge distri-
butions, was shown to follow from Schrédinger’s varia-
tion of his ‘Hamilton integral’ when extended to an open
system by imposing the zero-flux surface, Eq. (1), as a
boundary condition [21]. Shortly thereafter, it was
realized [22] that this extension of Schrédinger’s work
was in reality an application of Schwinger’s principle of
stationary action [23] to a proper open system in a
stationary state, one bounded by a surface of zero-flux,
Eq. (1). Only somewhat later was the full topological
significance of the zero-flux surface condition realized [7],
leading eventually to a complete theory of molecular
structure and structural stability [24].

The manner in which the zero flux surface condition,
Eq. (1), is imposed as a boundary condition in the
variation of either Hamilton’s integral for a stationary
state or of the action integral for a time dependent sys-
tem is an important mathematical step in the theory.
While introduced in 1975 [21], the most detailed state-
ment of the imposition of this constraint is to be found
in the thesis of Nguyen-Dang [24] with a somewhat
condensed account being given in 1981 [25]. Because of
its importance, the subject is worthy of further discus-
sion and exemplification.

The zero-flux surface as a boundary condition

Every application of the variation principle to physics
requires the imposition of boundary conditions and/or
constraints. To obtain Schrédinger’s ‘wave equation’ in
the variation of what he termed the ‘Hamilton integral’,
one imposes both the so-called natural boundary
condition that Viy - n =0 on the boundary at infinity
and the constraint that the wave function be normalized,
the Lagrange multiplier for the constraint being identi-
fied with the energy of the system [26]. To extend
Schrodinger’s variation principle to an open system one
must necessarily add a further condition to be satisfied
on the boundary of the open system.

For a one-electron system the natural boundary
condition employed by Schrédinger, that Vi - n =0,
becomes identical with the zero-flux boundary condition
for an open system, that Vp - n =0 and Schrodinger’s
derivation then applies to both the total system and to
an open system, if the latter is bounded by a surface of
zero-flux. Wigner and Seitz used Vi - n = 0 and hence

Vo -n=0, as the boundary condition for obtaining
solutions to Schrdédinger’s equation in their famous pa-
per introducing the Wigner-Seitz cell in their study of
solid sodium, considered as a one-electron system out-
side the core [27]. This was the first definition of an atom
in a molecule. It is also the boundary condition used by
Kohn in his derivation of a variational treatment of a
one-electron model of a periodic lattice [28].

Before examining the manner in which the zero-flux
boundary condition is imposed in the variation of the
action integral in Schwinger’s principle, we first give a
word description of the process. Schwinger’s principle is
beautiful in its conceptual simplicity. It is a marriage of
the principle of least action and Dirac’s transformation
theory. The action, denoted by W,, connects two states
of a system at the times t; and t,. For a classical or a
quantum system, it is the time integral of the Lagrangian
which, in turn, is the spatial integral of a Lagrange energy
density. Thus, the action integral incorporates the space-
time volume generated by the system’s temporal evolu-
tion. The principle of least action enables one to obtain
the equation of motion by requiring that the action in-
tegral be stationary (a minimum) with respect to first-
order variations in the path connecting two classical
states at the times t; and t, or to variations of the state
vector over the space-time volume bounded by the two
quantum states at the two time limits. In the ‘classical’
principle of least action, also called Hamilton’s extended
principle, the boundary of the system is assumed to lie at
infinity and the variations are set to zero at the two time
end points. In addition, the variations in the state vector
are also required to vanish on the spatial boundaries of
the system. This restricted variation of the action integral
yields the corresponding equation of motion, either
Lagrange’s equations or Schrédinger’s equation, as the
Euler equation when the variation of the action integral
is required to vanish, that is when 6W, = 0.

Schwinger realized that by relaxing the condition that
the variations vanish at the time end points and by
varying the time itself at these end points he could, to use
his own words, ‘recover all of physics’ for the total
system from the variation of the action integral, and not
just the equation of motion. This is accomplished by
identifying the end point variations with the generators
of infinitesimal canonical transformations in a classical
system and infinitesimal unitary transformations in a
quantum system. Such transformations can be used to
describe all possible changes in any system, both tem-
poral and spatial. It was Dirac who pointed out that
such infinitesimal transformations lie at the heart of
the correspondence between classical and quantum
mechanics, noting that the temporal variation of an
observable in quantum mechanics corresponded to ‘the
continuous unfolding of a unitary transformation’, while
the change in the dynamic variables in a classical system
are the result of a corresponding ‘continuous unfolding
of a contact transformation’ [29]. Thus, in his principle
of stationary action Schwinger postulates that the vari-
ation of the action integral does not vanish but instead
equals the difference in the action of the generators of
infinitesimal (&) canonical transformations — contact
transformations in classical mechanics and unitary



transformations in quantum mechanics — at the two time
end points t; and t,. Thus, for a total system with
boundaries at infinity, Schwinger’s principle is stated as

5W12 = ﬁ'(tz) — ﬁ(tl) (2)

This result may be restated in terms of a variation of the
Lagrange function operator to obtain an operational
form of the principle, a variational statement of the
Heisenberg equation of motion for the generator G

) [\iat} - s(i/h)(‘i" [ﬂ,é] ‘% (3)

where F of Eq. (2) has been equated to &(i/%)G. It is to be
understood that the variation in the Lagrangian is caused
by the action of the generator G on the state vector.
Equation (2) implies the equation of motion, since it
states that the variation in the action vanishes except for
the contributions from the time end-points, implying
therefore, that 6W, = 0 over the space-time volume, as
for the restricted variation, the one that yields the Euler
equation. In the general case of a system with finite
boundaries, the space-time volume is bounded by a time-
like surface which consists of the spatial boundary of the
system at each instant of time, in addition to the space-
like surfaces at the two time end-points, each of which
represents the system at the given times t; and t,. Schw-
inger gives an expression for the generalized variation of
the action integral that includes variations on and of both
the time-like and the space-like surfaces. Thus, while he
stated his principle, Eq. (2), only for a total system with
boundaries at infinity and hence without contributions
from generators acting on the time-like surfaces, his
general expression enables one to apply his principle to a
system with finite boundaries, that is, to an open system.
In doing so, one discovers, as detailed below, that ex-
tending the variation to an open system with unspecified
boundaries does not yield the correct physics. Schro-
dinger’s equation, already obtained from the variation of
the action over the closed space-time volume, enables one
to obtain an expression for the time rate-of-change of an
expectation value for any open system, one that differs
from the corresponding expression obtained from

oL [\P,t,g] - (a/2){(i/h)(‘i’

Schwinger’s principle for arbitrary boundaries. To re-
cover the correct physics for an open system from the
variational principle of least action, one must impose the
zero-flux surface constraint as a boundary condition on
the time-like surface. The resulting open systems are
termed proper open systems [1, 30].
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surface when subjected to a variation 0¥ of the state
vector W [25]. A region Q(®d,t) is defined in terms of
a ‘well-behaved’ trial function ® =¥ + 0¥, that is
bounded by a zero-flux surface in Vpg(r)

Vpe(r) -n(r) =0 Vr €S(Qrs) (4)

where pg¢ is the density defined in terms of the trial
function ®. It is assumed that as @ tends to ¥ at any
time t, Q(d,t) is continuously deformable into the region
Q(t) = Q(W¥,t) associated with the atom. The region
Q(d,t) thus represents the atom in the varied total
system, which is described by the trial function, just
as Q(t) represents the atom when the total system is
described by Y. Imposing these conditions amounts to
imposing the variational constraint that the divergence
of Vpge(r) integrates to zero at all stages of the variation
which, in turn, implies the variational constraint that

S[Q)y= 5{ / Vzp(r,t)dr} =0 (5)
Q(t)

It is important to understand that the zero-flux
boundary condition, assumed to be maintained during
the variation and denoted by ¢ is unidirectional in the
sense that it implies

Vo(r) - n=0, VreS(r) = 5/drV2p(r) =0 (6)
Q

but not the converse. The converse would demand only
that the integral of flux in Vp - n over the bounding
surface of Q be zero, and not that Vp - n = 0 locally, a
condition that is neither made nor required for the
variational derivation of the principle of stationary
action.

It is possible [30] to express the variation of the ac-
tion-integral operator or, more simply, of the Lagrange
function operator for an open system with finite
boundaries in a form that shows that it differs from that
obtained for the total system, as given in Eq. (3), by a
constant times the variation of the constraint integral
I[Q]y, the form given in Eq. (7).

1,G||¥)q + complexconjugate t — (72/4m) Ly (7)
[7.6]] j

Clearly, the variational constraint given in Eq. (5),
that arises from imposing the zero-flux boundary con-
dition, Eq. (4), at every stage of the variation, causes the
expression for the variation of the Lagrange function
operator given in Eq. (7), to reduce to the result given in
Eq. (8):

oL [\i],t,g} - (8/2){(i/h)(‘i” [ﬁ,é} ‘lP)Q + complex conjugate} (8)

The critical step in the imposition of the zero-flux
boundary condition concerns the continuous deform-
ability assumed for a region bounded by a zero-flux

a statement of the principle of least action that is a
generalization of Schwinger’s expression for a total
system, Eq. (3). Open systems described by Eq. (8) are
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termed ‘proper open systems.” Eq. (8) applies to any
region of space bounded by a zero-flux surface, the total
system and its constituent proper open systems. It is
a variational statement of the Heisenberg equation
of motion for the generator (observable) G and is the
operational statement of Schwinger’s principle. A single
principle that, as claimed by Schwinger, recovers “all of
physics™, a description that includes as well, the physics
of an open system. As well as yielding Schrodinger’s
equation of motion, one also obtains the commutation
relations through the action of the generator
(0L/3(dg,/dt))6g, on the coordinate and conjugate
momentum operators.

As noted above, the variation without the imposition
of the zero-flux boundary condition does not recover the
physics of an open system, as required by Schrodinger’s
equation. Thus, one finds that the contribution from the
variations associated with the boundary of an open
system with arbitrary boundaries is given by [31]:

7{ dS(r,) - (—12/2m) (V\if+5\%+c.c.+ni(ss(rs)) 9)

where L is the Lagrangian density and S(ry) denotes the
variation of the boundary. The corresponding term
appears in the variation of the boundary of Schréding-
er’s variation of his energy functional for a system in a
stationary state. The imposition of the constraint given
in Eq. (5) rids the variational expression of the un-
operational surface variation dS(r;) to yield the required
physical result presented in Eq. (10):

(E/Z)j{dS(rs) - (Jg(r)+c.c.) (10)

where Jg(r) is the current density for the generator G
[31]. The surface flux in the current density of the
generator as given in Eq. (10) is essential to the
description of the properties of an open system.

From boundary variations to generators
of physical change

The purpose of generalizing the variation of the action
integral to include the variations on and of the time-like
and space-like surfaces is to complete the physical
description of a system through the identification of
the boundary variations with the generators of infinites-
imal unitary  transformations; the identification
0¥ = —¢(i/n)GWY. Thus, to apply the physical variations
envisaged in the principle of stationary action to either
the total system or one of its open systems, one assumes
the existence of a special class of trial functions ®; a class
of functions that when subjected to variations corre-
sponding to real physical changes in the system will
necessarily exhibit the property of continuous deform-
ability of a region Q(®,t) into the region Q(¥,t).

One readily demonstrates instances where this hy-
pothesis is clearly verified for the coordinate changes
that result from the action of a number of important
elementary infinitesimal unitary transformations. The
action of the generator of an infinitesimal unitary

transformation can be represented by the operator U
and its inverse U™" which equals the Hermitian adjoint,

= i (ie/n)G = TG

(11)

and UU' =1 to order ¢, where 1 denotes the unit
operator. The action of the transformation on an
observable A is described by

U=1- (ie/n)G = /MG ()

A=A-A=A-UAU" =(/m[GA] (12

and the change induced in the state vector is given
by 0¥ = —¢(i/h)GY. One notes that the corresponding
change caused by an infinitesimal canonical transforma-
tion — a contact transformation — of a property A in
classical mechanics is given in terms of the Poisson
bracket as A = ¢[A,G]p, We consider, in turn, a number
of elementary transformations, each of which when
employed in Eq. (8) yields a corresponding theorem for a
proper open system — for an atom in a molecule.

1. Setting G = p as the generator in Eq. (8), yields the
atomic statement of the Ehrenfest force theorem, the
time derivative of the electronic momentum. This
transformation, by Eq. (12) with A =r, induces an
infinitesimal uniform translation of the electronic
coordinate r by —¢ and thus r’ = r—¢. Clearly, such a
transformation at any stage of the variation process,
simply translates a zero-flux surface by the amount —¢
and the requirement of the continuous deformability
of a region Q(d,t) into the region Q(V¥,t) is main-
tained throughout. The Ehrenfest force is the force
that is measured in the operation of an atomic force
microscope [31].

2. Setting G = r-p as the generator in Eq. (8), yields
the atomic statement of the virial theorem, the
theorem that enables one to define the electronic
energy of an open system and the pressure acting on it
[32]. The effect of this transformation is to induce a
scaling of the electronic coordinate r by the factor
{ = e’ and the effect of U(¢) on the state vector yields
a properly normalized function with the coordinate r
scaled by (. If p’(r) denotes the transformed density
viewed as a function of r, then Vp'(r) = {V’p(r’) and
the zero-flux surface is transformed into another
surface of zero-flux.

3. Setting G = r as the generator in Eq. (8), yields the
atomic current theorem, since the time derivative of
an electronic coordinate is an electronic velocity, or
electronic current. It is this theorem that, among
other things, makes possible the partitioning of the
magnetic susceptibility into atomic contributions [33].
The effect of this generator is to transform r into itself

and the effect of U(r) on the state vector is to induce
a phase transformation. Thus the density and its
properties are left unchanged by this transformation
and the property of zero-flux is maintained through-
out the variation.

4. Setting G = N1, the number operator whose expec-
tation value determines an atomic population [34],
yields the integrated equation of continuity when



used as the generator in Eq. (8). It clearly leaves the
state vector and the density unchanged when used as
the generator,

5. Setting G = H and ¢ = dt yields the temporal gener-
ator —(i/h)H dt, the generator that describes the
‘continuous unfolding’ of the state vector and of all
properties, including the density. The continuous
evolution of the density as a function of time ensures
a corresponding continuous development of the zero-
flux surface.

These examples of generators, which yield the most
important of the atomic theorems that determine the
mechanics of an open system [35], all induce infinitesimal
unitary transformations that meet the requirement of
causing a continuous deformation of a region Q(®,t)
into the region Q(W¥,t). Could one construct a trial
function that satisfied the necessary boundary conditions
at infinity, including the vanishing of 6® when employed
in the variation of the action integral, but did not yield a
continuous mapping of a region Q(®d,t) bounded by a
zero-flux surface into a similarly bounded region Q(¥,t)?
Perhaps, but then such a discontinuous transformation
would not correspond to the action of a generator of an
infinitesimal coordinate transformation as required by
Schwinger’s identification of the mathematical variation
in the state vector with the generator of an infinitesimal
unitary transformation,  that is, the identification
oV = —¢&(i/h)GY, where G is a physical observable. The
principle of stationary action is after all, not a mathe-
matical theorem, but a statement of a physical principle.

Conclusions

The application of the defining equation of a zero flux
surface, Eq. (1), to a charge distribution whose topology
exhibits only isolated point attractors, leads to the
disjoint and exhaustive partitioning of space into a set of
regions, each of which contains a single nucleus. This
statement is contingent upon the use of the Coulombic
Hamiltonian in the description of the system of interest,
an acceptable procedure for energies up to those
required for plasma formation. The topological defini-
tion of structure and the accompanying physical under-
standing it affords survive the presence of non-isolated
attractors found in excited states of one-electron sys-
tems. The topology of the electron density is a conse-
quence of and summarizes that physics that underlies the
form of matter. Whatever new topological features the
charge density may be found to exhibit, as a conse-
quence of its averaging over nuclear motions for
example, they may be incorporated into an expanded
theory to provide a still deeper understanding of the
behavior of matter.

The core of Schwinger’s principle of stationary action
is the introduction of the variation of the state vector on
the space-time boundary defined by the temporal evo-
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lution of a system and the variation of the boundary
itself in conjunction with the subsequent identification
of these variations with the generators of infinitesimal
unitary transformations. Thus, the theory requires the
use of a special class of trial functions: those whose
variation will correspond to continuous changes in the
coordinates of the physical system, the very requirement
needed to ensure the applicability of the zero-flux
surface condition as the defining constraint of an open
system.
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